
Lecture 3

Simple Solutions of the 1-D Transport Equation

1 The 1-D Monoenergetic Transport Equation

Consider the 1–D slab geometry, monoenergetic, transport equation with isotropic scatter-

ing:

µ
∂ψ

∂x
(x, µ) + σtψ(x, µ) =

σs

4π
φ(x) +

Q(x)

4π
, (1)

where

φ = 2π

∫ +1

−1

ψ(x, µ)dµ (2)

and µ = cos θ, where θ is illustrated in Fig. 1. The boundary conditions for this equation

define ψ(xL, µ) for µ > 0, and ψ(xR, µ) for µ < 0.

1.1 Common Boundary Conditions

Vacuum Boundary Conditions:

ψ(xL, µ) = 0 , for µ > 0.

Reflective Boundary Conditions:

ψ(xL, µ) = ψ(xL,−µ) , for µ > 0.
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Figure 1: The direction variable, θ. Note that the directional dependence is assumed to be
azimuthally symmetric.

Periodic Boundary Conditions:

ψ(xL, µ) = ψ(xR, µ) , for µ > 0.

Source Boundary Conditions:

ψ(xL, µ) = ψ(µ) , for µ > 0.

2 Pure Absorber Solutions

Consider the following problem.

ψ(xL, µ) = f(µ) , for µ > 0,
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ψ(xR, µ) = 0 , for µ < 0,

σs = 0 ,

Q = 0 .

The corresponding transport equation is

µ
∂ψ

∂x
+ σaψ = 0 .

Dividing the above equation by µ, we get

∂ψ

∂x
+

σa

µ
ψ = 0 .

Note that we have a simple first-order ODE for each value of µ. The solution is a simple

exponential. To see this, we first multiply the above equation by e
σax

µ :

e
σax

µ
∂ψ

∂x
+ e

σax
µ

σa

µ
ψ = 0 .

The above equation can be re-expressed as

∂

∂x

[
e

σax
µ ψ(x, µ)

]
.

So

e
σax

µ ψ(x, µ) = c ,

is a solution, or equivalently,

ψ(x, µ) = c e−
σax

µ .
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The boundary conditions determine c.

ψ(xL, µ) = c e−
σa
µ

xL = f(µ) ,

so

c = f(µ)e
σa
µ

xL .

Thus our complete solution is

ψ(x, µ) = f(µ)e−
σa
µ

(x−xL) , for µ > 0,

= 0 , for µ < 0. (3)

Each ray is exponentially attenuated proportional to the distance that it travels from xL

to x:

S=
x−x
u

L

θ

XXL

S

Figure 2: The distance s given x and µ.
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3 The Formal Solution with Scattering

Consider the following problem.

ψ(xL, µ) = f(µ) ,

ψ(xR, µ) = g(µ) ,

Q(x) = 0 .

The equation to be solved is

µ
∂ψ

∂x
+ σtψ =

σs

4π
φ(x) ,

Use the integrating factor approach again:

∂ψ

∂x
+

σt

µ
ψ =

σs

4πµ
φ ,

e
σtx
µ

∂ψ

∂x
+ e

σtx
µ

σt

µ
ψ =

σs

4πµ
e

σtx
µ φ ,

∂

∂x

[
e

σtx
µ ψ

]
=

σs

4πµ
e

σtx
µ φ ,

ψ(x, µ)e
σtx
µ − ψ(xL, µ)e

σtxL
µ =

∫ x

xL

σs

4πµ
e

σtx′
µ φ(x′)dx′ , for µ > 0,

ψ(xR, µ)e
σtxR

µ − ψ(x, µ)e
σtx
µ =

∫ xR

x

σs

4πµ
e

σtx′
µ φ(x′)dx′ , for µ < 0,

So the final solution is

ψ(x, µ) = ψ(xL, µ)e−
σt
µ

(x−xL) +

∫ x

xL

σs

4πµ
e

σt
µ

(x′−x) φ(x′)dx′ , for µ > 0,
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and

ψ(x, µ) = ψ(xR, µ)e
σt
µ

(xR−x) −
∫ xR

x

σs

4πµ
e

σt
µ

(x′−x) φ(x′)dx′ , for µ < 0.

Note that if you know φ(x), you need only perform an integral to get the solution, but

φ(x) is actually an integral of ψ(x, µ). This suggests that you might be able to iterate to

a solution. Specifically, you can use the order-of-scatter or Neumann series technique:

First we calculate the uncollided flux:

ψ(o)(x, µ) = ψ(xL, µ)e−
σt
µ

(x−xL) , for µ > 0,

and

ψ(o)(x, µ) = ψ(xR, µ)e
σt
µ

(xR−x) , for µ < 0.

Next we calculate the first-scattered flux:

ψ(1)(x, µ) =

∫ x

xL

σs

4πµ
e

σt
µ

(x′−x) φ(o)(x′)dx′ , for µ > 0,

and

ψ(1)(x, µ) = −
∫ xR

x

σs

4πµ
e

σt
µ

(x′−x) φ(o)(x′)dx′ , for µ < 0.

where

φ(o)(x) = 2π

∫ +1

−1

ψ(o)(x, µ)dµ .

...

Continue on
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...

You calculate the n + 1’th-scattered angular flux using the n’th-scattered scalar flux:

ψ(n+1) =

∫ x

xL

σs

4πµ
e

σt
µ

(x′−x)φ(n)(x′)dx′ , for µ > 0,

and

ψ(n+1) = −
∫ xR

x

σs

4πµ
e

σt
µ

(x′−x)φ(n)(x′)dx′ , µ < 0.

Finally, add up the contributions to obtain the total angular flux:

ψ(x, µ) =
∞∑

n=0

ψ(n)(x, µ) .

This is very closely related to the basic iteration technique used in Sn codes.
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